
Willy Teav MAE 166C Project

Project

For this project, the objective is to design a composite structure to withstand the load shown on Figure 1.

Figure 1: Loading Diagram

The material used will be a graphite/epoxy composite, with the following material properties and strengths:

Table 1: Mechanical Properties

E1 155 GPa
E2 12.10 GPa
G12 4.4 GPa
ν12 0.248
XC −1250 MPa
XT 1500 MPa
YC −200 MPa
YT 50 MPa
τ 100 MPa

An additional constraint is that the layup will be symmetric, with a total of 6 layers. For this project, we will
determine the orientation and thickness for each ply. We will attempt to optimize our design for weight, which
is equivalent to volume, and since two of our dimensions are already defined, this is essentially optimizing the
thickness.
Our first step will be to turn the load q into a vector that we can use for our analysis, in particular, we will be
looking at the moments generated by this load.
We assume that the x-direction is along the length of the beam, with the positive x-direction pointing away from
the fixed support. The load q will act in the positive z-direction, and the y-direction points out of the page.
We need to acknowledge that the load q is offset from the center of the beam and that the load is normalized by
length. To obtain our moments, we use the equations:

Mx =
((q · 5 m) · .5 · 5 m)

25 cm
= 500000 Nm/m (1)

Mxy =
(−(q · 5 m) · .5 · 25 cm)

25 cm
= −25000 Nm/m (2)

At this point, I began a Monte Carlo Optimization. The inputs that I will randomize will be θ1, θ2, θ3, t1, t2, and t3.
Even though the structure will have 6 plies, I only need to vary the parameters of 3 of them due to symmetry.
The angles are bounded by [-90,90] and the thickness bounds were later honed in after multiple iterations. It
started off as .01 to 1 mm layer thicknesses, and eventually became 5 to 10 mm layer thicknesses due to too many
failures.

1

Willy Teav MAE 166C Project

My process was to typically have around 100 randomly generated structures for evaluation, which drives refinement
in the ranges.
The failure criteria that I am using is the max-stress criteria combined with first-ply-fail theory, meaning that the
failure is not progressive, and has a hard zero-tolerance policy. These are the equations for the maximum stress
failure criteria:

XT ≥ σ1 ≥ XC (3)

YT ≥ σ2 ≥ YC (4)

|σ12| < |τ | (5)

To obtain the σ’s necessary to evaluate failure, I started with generating a ABD matrix for reach random design.
The equations used to calculate each of the ABD matrices are

Aij =
n∑

k=1

Q̄k
ij (zk − zk−1) (6)

Bij =
1

2

n∑
k=1

Q̄k
ij

(
z2k − z2k−1

)
(7)

Dij =
1

3

n∑
k=1

Q̄k
ij

(
z3k − z3k−1

)
(8)

Here, z is the distance away from the center-line of the composite layup, with a positive value pointing downwards.
The indices of z begin at the top (negative value) with z0 and end at zn at the bottom (positive value) where n
is the number of plies (6 total).
The Q̄ matrix is equal to [

Q̄
]

= [T]−1 [Q] [T]−T (9)

Where [Q] is the reduced stiffness matrix that has the form


E1

1− (ν12ν21)

ν21E1

1− (ν21ν12)
0

ν12E2

1− (ν12ν21)

E2

1− (ν12ν21)
0

0 0 G12

 (10)

This matrix is symmetric because of the relationship

ν12
E1

=
ν21
E2

(11)

The [T] matrix is a transformation matrix:

 cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ − sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ

 (12)

After creating the ABD matrix, I initiated a force/moment vector



0
0
0

500000
0

−25000

 Nm/m (13)

I obtain the principal stresses by first obtaining the strains and curvatures using the equation 2

Willy Teav MAE 166C Project



0
0
0

500000
0

−25000


=

[
A B
B D

]


ε0x
ε0y
γ0xy
κx
κy
κxy


(14)

Once I have the strains and curvatures, I obtain the principal stresses using these relations:
σx
σy
σxy

 =
[
Q̄
]

ε0x
ε0y
γ0xy

+
zk − zk−1

2

[
Q̄
]

κx
κy
κxy

 (15)

Finally, to get stress values that I could use to critique with the maximum stress criteria, I applied a transformation
matrix to bring everything back to the local coordinates. This happened for each ply.
The general equation that I will be using is:  σ1σ2

σ12

 =
[
T
]  σxσy
σxy

 (16)

At each instance where a ply fails, I mark it as a failure and record the failure type (tension in the X-direction,
shear, etc). I also let it keep testing in all of the other directions and plies after a failure is detected to get a better
understanding of where the failures occur. I append each failure type and ply number to a string for tracking.
After collecting all the data for a run, I compile everything to a spreadsheet that is time-stamped, which allows
me to keep track of how trends change.

Figure 2: Screenshot of spreadsheet

Now here is a table that highlights the results of my optimization

3

Willy Teav MAE 166C Project

Table 2: Optimization Highlights
Trial Best Result Orientation Best Result Height (m)

1 - -

2 - -

3 [−7◦/77◦/1◦/]s 0.056

4 [−8◦/41◦/64◦/]s 0.05

5 [−15◦/0◦/0◦/]s 0.048

6 [0◦/− 15◦/0◦/]s 0.046

7 [10◦/− 14◦/48◦/]s 0.044

8 [0◦/0◦/− 60◦/]s 0.0442

9 [0◦/0◦/0◦/]s 0.0436

10 [−15◦/0◦/15◦/]s 0.0436

Notes/Changelog:

Trial 1: All results had failures in 5 or 6 plies

Trial 2: Changes thickness bounds to .1 to 10 mm, best result failed in only one ply

Trial 3: Thickness bounds changed to 1 to 10 mm. Only one result did not fail.

Trial 4: Thickness bounds changed to 5 to 10 mm. Again, only one result did not fail, but had a handful of cases
that almost passed (only failed in one direction and in one ply).

Trial 5: Thickness bounds were left unchanged, but I discretize the available angles to more ’standard’ angles, namely
±[0,15,30,45,60,75,90]. I noticed that cases with a lot of 0◦ plies seemed to be less failure-prone

Trial 6: After noticing that 0◦ plies seemed to be more successful, I increased the frequencies of 0s by changing the
available angles to be ±[0,0,0,15,30,45,60,75,90].

Trial 7: I switched back to completely random angles varying from −90◦ to 90◦. Instead of randomly generating 100
combinations, I generated 1000.

Trial 8: I switched back to the 0-biased allowable angles from Trial 6, but this time, I allowed the random thickness
to generate a number by the .1 mm. Again, I had 1000 cases, which took 26 minutes to generate and analyze.
For the first time, the best result’s height did not decrease.

Trial 9: Out of curiosity, I decided to see what would happen if I forced all the angles to be equal to 0. I only ran
100 cases and it took just two minutes.

Trial 10: Finally, I decided to call it quits. The final trial had the thickness bound from 5 to 10 mm with randomization
down to the .1 mm. The angles were randomly selected from ±[0,0,0,15,30,45,60,75,90].

To conclude, I say that my final optimized beam has these properties:

Table 3: Optimized Beam Properties
Parameter Value

θ1 −15◦

θ2 0◦

θ3 15◦

t1 5.7 mm

t2 7.5 mm

t3 8.6 mm

Total Thickness 43.6 mm

4

Willy Teav MAE 166C Project

Code

%% MAE 166C Project; Willy Teav 104917860

clearvars; close all ;clc

E1 = 155e9;
E2 = 12.1e9;
G12 = 4.4e9;
nu12 = .248;
XT = 1500e6;
XC = -1250e6;
YT = 50e6;
YC = -200e6;
TAU = 100e6;

q = 10e3; %N/m
L = 5; %m
w = 25e-2; %m

N_x = 0; N_y = 0; N_xy = 0; M_y = 0;
M_x = (q*Lˆ2)/(2*w);
M_xy = -(q*L)/2;

NM_vec = [N_x; N_y; N_xy; M_x; M_y; M_xy];

% pseudo code
% 3 angles and 3 thicknesses
% randomly pick angles and thicknesses
% calculate volume and whether or not it passes
% log all in excel sheet
% try again with new values

% initializations
angle1 = 45; angle2 = 45; angle3 = 45;
t1 = .1e-3; t2 = .1e-3; t3 = .1e-3;

sign = [-1,1];

sheetname = datestr(now,’mm-dd-HH-MM-SS’);
num_trials = 100;
wb = waitbar(0,’progress’);
angles = [0,0,0,15,30,45,60,75,90];
%angles = [0,0];
tic
for trial = 1:num_trials

failure = 0;
failure_layer = 0;
failure_mode = "";
angle1 = angles(randi(length(angles)))*sign(randi(2));
angle2 = angles(randi(length(angles)))*sign(randi(2));
angle3 = angles(randi(length(angles)))*sign(randi(2));

% angle1 = randi([0,90])*sign(randi(2));
% angle2 = randi([0,90])*sign(randi(2));
% angle3 = randi([0,90])*sign(randi(2));

t1 = randi([50,100])/1e4; t2 = randi([50,100])/1e4; t3 = randi([50,100])/1e4;
%5 to 10 mm layer thickness
stack = [angle1, angle2, angle3, angle3, angle2, angle1]; 5

Willy Teav MAE 166C Project

thickness = [t1, t2, t3, t3, t2, t1];
z = make_z(stack,thickness);

A_mtx = A(stack,z,E1,E2,G12,nu12);
B_mtx = B(stack,z,E1,E2,G12,nu12);
D_mtx = D(stack,z,E1,E2,G12,nu12);

ABD_mtx = [A_mtx,B_mtx;B_mtx,D_mtx];

syms epsx epsy gammaxy kx ky kxy

eq = NM_vec == ABD_mtx*[epsx; epsy; gammaxy; kx; ky; kxy];
vals = (vpasolve(eq));
epsx = double(vals.epsx);
epsy = double(vals.epsy);
gammaxy = double(vals.gammaxy);
kx = double(vals.kx);
ky = double(vals.ky);
kxy = double(vals.kxy);

for i = 1:length(stack)
sigma_middle = Qbar(stack(i),E1,E2,G12,nu12)*[epsx;epsy;gammaxy] + ...
.5*(z(i)+z(i+1))*Qbar(stack(i),E1,E2,G12,nu12)*[kx;ky;kxy];
sigmax(i) = sigma_middle(1);
sigmay(i) = sigma_middle(2);
sigmaxy(i) = sigma_middle(3);
strainx(i) = epsx + .5*(z(i)+z(i+1))*kx;
strainy(i) = epsy + .5*(z(i)+z(i+1))*ky;
strainxy(i) = gammaxy + .5*(z(i)+z(i+1))*kxy;

end

for layer = 1:length(stack)
sigma_vec = T(stack(layer))*[sigmax(layer);sigmay(layer);sigmaxy(layer)];
sigma_1 = sigma_vec(1);
sigma_2 = sigma_vec(2);
sigma_12 = sigma_vec(3);

if sigma_1 > XT || sigma_1 < XC
%sigma_1
if sigma_1 > 0

failure_mode = append(failure_mode," XT",num2str(layer));
else

failure_mode = append(failure_mode," XC",num2str(layer));
end
%failure_layer = layer;
failure = 1;

end

if sigma_2 > YT || sigma_2 <YC
%sigma_2
if sigma_2 > 0

failure_mode = append(failure_mode," YT",num2str(layer));
else

failure_mode = append(failure_mode," YC",num2str(layer));
end
%failure_layer = layer;
failure = 1;

end 6

Willy Teav MAE 166C Project

if abs(sigma_12) > abs(TAU)
%sigma_12
failure_mode = append(failure_mode," TAU",num2str(layer));
%failure_layer = layer;
failure = 1;

end
end

%outputs
trial;
stack;
thickness;
height = sum(thickness);
failure;
failure_mode;
%failure_layer

tab = table(trial,stack,thickness,height,failure,failure_mode);
%sheetname = datestr(now,’mm-dd-HH-MM-SS’);

if trial == 1
%xlswrite(’MAE_166C_Optimization.xlsx’,["Trial","stack","thickness"...
% ,"height","failure","failure_mode"],’Test’,’A1’)

%xlswrite(’MAE_166C_Optimization.xlsx’,["Silly Goose"],’Test’,’P1:S1’)

% xlswrite(’MAE_166C_Optimization.xlsx’,tab.Properties.VariableNames,...
% ’Test’,’A1’)

writetable(tab,’MAE_166C_Optimization.xlsx’,’Sheet’,sheetname,’Range’,’A1’)
end

excel_range = append(’A’,num2str(trial+1));

% xlswrite(’MAE_166C_Optimization.xlsx’,[num2cell(trial),num2cell(stack),...
% num2cell(thickness),num2cell(height),num2cell(failure),...
% failure_mode],’Test’,excel_range)

xlswrite(’MAE_166C_Optimization.xlsx’,tab.Variables,sheetname,excel_range)

%wb = waitbar(trial/num_trials,’progress’);
waitbar(trial/num_trials,wb,’progress’)
end

winopen(’MAE_166C_Optimization.xlsx’)
toc
%% debug
% thickness = [1, 1, 1, 2, 2, 2];
% stack = [45,45,90, 90, 45, 45];
% z = make_z(stack,thickness)

%% Functions
function T = T(theta)
T = [cosd(theta)ˆ2, sind(theta)ˆ2, 2*sind(theta)*cosd(theta);

sind(theta)ˆ2, cosd(theta)ˆ2, -2*sind(theta)*cosd(theta);
-sind(theta)*cosd(theta), sind(theta)*cosd(theta), ... 7

Willy Teav MAE 166C Project

cosd(theta)ˆ2 - sind(theta)ˆ2];
end

function Q = Q(E1,E2,G12,nu12)
nu21 = (E2/E1)*nu12;
Q = [E1/(1-(nu12*nu21)) , (nu21*E1)/(1 - (nu21*nu12)), 0;

(nu12*E2)/(1 - (nu12*nu21)), E2/(1-(nu12*nu21)), 0;
0, 0, G12];

end

function Qbar = Qbar(theta,E1,E2,G12,nu12)
Qbar = T(theta)ˆ-1 * Q(E1,E2,G12,nu12) * T(theta)’ˆ-1;
end

function alphabar = alphabar(theta,alpha1,alpha2)
alphabar = [alpha1*cosd(theta)ˆ2+alpha2*sind(theta)ˆ2;...

alpha1*sind(theta)ˆ2+alpha2*cosd(theta)ˆ2;...
2*(alpha1-alpha2)*cosd(theta)*sind(theta)];

end

function z = make_z(array,thickness)
N = length(array);
%height = thickness*N;
%z = linspace(-height/2,height/2,N+1);
height = sum(thickness);
z = zeros(1,N);
z(1) = -height/2;
for i = 2:N+1

z(i) = z(i-1) + thickness(i-1);
end
end

function A = A(array,z_array,E1,E2,G12,nu12)
%let array be an array of angles
N = length(array);
A = zeros(3);
for i = 2:N+1

A = A + Qbar(array(i-1),E1,E2,G12,nu12)*(z_array(i)-z_array(i-1));
end
end

function B = B(array,z_array,E1,E2,G12,nu12)
%let array be an array of angles
N = length(array);
B = zeros(3);
if ˜isequal(array(:),flip(array(:)))

%fixed a rounding error that causes symmetric arrays to not turn B = 0
for i = 2:N+1

B = B + Qbar(array(i-1),E1,E2,G12,nu12)*(z_array(i)ˆ2-z_array(i-1)ˆ2);
end
B = B/2;
end
end

function D = D(array,z_array,E1,E2,G12,nu12)
%let array be an array of angles
N = length(array);
D = zeros(3); 8

Willy Teav MAE 166C Project

for i = 2:N+1
D = D + Qbar(array(i-1),E1,E2,G12,nu12)*(z_array(i)ˆ3-z_array(i-1)ˆ3);

end
D = D/3;
end

9

