Project

For this project, the objective is to design a composite structure to withstand the load shown on Figure 1 .

Figure 1: Loading Diagram

The material used will be a graphite/epoxy composite, with the following material properties and strengths:

Table 1: Mechanical Properties

E_{1}	155 GPa
E_{2}	12.10 GPa
G_{12}	4.4 GPa
ν_{12}	0.248
X_{C}	-1250 MPa
X_{T}	1500 MPa
Y_{C}	-200 MPa
Y_{T}	50 MPa
τ	100 MPa

An additional constraint is that the layup will be symmetric, with a total of 6 layers. For this project, we will determine the orientation and thickness for each ply. We will attempt to optimize our design for weight, which is equivalent to volume, and since two of our dimensions are already defined, this is essentially optimizing the thickness.
Our first step will be to turn the load q into a vector that we can use for our analysis, in particular, we will be looking at the moments generated by this load.
We assume that the x -direction is along the length of the beam, with the positive x -direction pointing away from the fixed support. The load q will act in the positive z-direction, and the y-direction points out of the page.
We need to acknowledge that the load q is offset from the center of the beam and that the load is normalized by length. To obtain our moments, we use the equations:

$$
\begin{align*}
M_{x}=\frac{((q \cdot 5 \mathrm{~m}) \cdot .5 \cdot 5 \mathrm{~m})}{25 \mathrm{~cm}} & =500000 \mathrm{Nm} / \mathrm{m} \tag{1}\\
M_{x y}=\frac{(-(q \cdot 5 \mathrm{~m}) \cdot .5 \cdot 25 \mathrm{~cm})}{25 \mathrm{~cm}} & =-25000 \mathrm{Nm} / \mathrm{m} \tag{2}
\end{align*}
$$

At this point, I began a Monte Carlo Optimization. The inputs that I will randomize will be $\theta_{1}, \theta_{2}, \theta_{3}, t_{1}, t_{2}$, and t_{3}. Even though the structure will have 6 plies, I only need to vary the parameters of 3 of them due to symmetry. The angles are bounded by $[-90,90]$ and the thickness bounds were later honed in after multiple iterations. It started off as .01 to 1 mm layer thicknesses, and eventually became 5 to 10 mm layer thicknesses due to too many failures.

My process was to typically have around 100 randomly generated structures for evaluation, which drives refinement in the ranges.
The failure criteria that I am using is the max-stress criteria combined with first-ply-fail theory, meaning that the failure is not progressive, and has a hard zero-tolerance policy. These are the equations for the maximum stress failure criteria:

$$
\begin{align*}
& X_{T} \geq \sigma_{1} \geq X_{C} \tag{3}\\
& Y_{T} \geq \sigma_{2} \geq Y_{C} \tag{4}\\
& \left|\sigma_{12}\right|<|\tau| \tag{5}
\end{align*}
$$

To obtain the σ 's necessary to evaluate failure, I started with generating a ABD matrix for reach random design. The equations used to calculate each of the ABD matrices are

$$
\begin{gather*}
A_{i j}=\sum_{k=1}^{n} \bar{Q}_{i j}^{k}\left(z_{k}-z_{k-1}\right) \tag{6}\\
B_{i j}=\frac{1}{2} \sum_{k=1}^{n} \bar{Q}_{i j}^{k}\left(z_{k}^{2}-z_{k-1}^{2}\right) \tag{7}\\
D_{i j}=\frac{1}{3} \sum_{k=1}^{n} \bar{Q}_{i j}^{k}\left(z_{k}^{3}-z_{k-1}^{3}\right) \tag{8}
\end{gather*}
$$

Here, z is the distance away from the center-line of the composite layup, with a positive value pointing downwards. The indices of z begin at the top (negative value) with z_{0} and end at z_{n} at the bottom (positive value) where n is the number of plies (6 total).
The \bar{Q} matrix is equal to

$$
\begin{equation*}
[\bar{Q}]=[T]^{-1}[Q][T]^{-T} \tag{9}
\end{equation*}
$$

Where $[Q]$ is the reduced stiffness matrix that has the form

$$
\left[\begin{array}{ccc}
\frac{E_{1}}{1-\left(\nu_{12} \nu_{21}\right)} & \frac{\nu_{21} E_{1}}{1-\left(\nu_{21} \nu_{12}\right)} & 0 \tag{10}\\
\frac{\nu_{12} E_{2}}{1-\left(\nu_{12} \nu_{21}\right)} & \frac{E_{2}}{1-\left(\nu_{12} \nu_{21}\right)} & 0 \\
0 & 0 & G_{12}
\end{array}\right]
$$

This matrix is symmetric because of the relationship

$$
\begin{equation*}
\frac{\nu_{12}}{E_{1}}=\frac{\nu_{21}}{E_{2}} \tag{11}
\end{equation*}
$$

The $[T]$ matrix is a transformation matrix:

$$
\left[\begin{array}{ccc}
\cos ^{2} \theta & \sin ^{2} \theta & 2 \sin \theta \cos \theta \tag{12}\\
\sin ^{2} \theta & \cos ^{2} \theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & \sin \theta \cos \theta & \cos ^{2} \theta-\sin ^{2} \theta
\end{array}\right]
$$

After creating the ABD matrix, I initiated a force/moment vector

$$
\left[\begin{array}{c}
0 \tag{13}\\
0 \\
0 \\
500000 \\
0 \\
-25000
\end{array}\right] \mathrm{Nm} / \mathrm{m}
$$

I obtain the principal stresses by first obtaining the strains and curvatures using the equation

$$
\left\{\begin{array}{c}
0 \tag{14}\\
0 \\
0 \\
500000 \\
0 \\
-25000
\end{array}\right\}=\left[\begin{array}{ll}
A & B \\
B & D
\end{array}\right]\left[\begin{array}{c}
\epsilon_{x}^{0} \\
\epsilon_{y}^{0} \\
\gamma_{x y}^{0} \\
\kappa_{x} \\
\kappa_{y} \\
\kappa_{x y}
\end{array}\right\}
$$

Once I have the strains and curvatures, I obtain the principal stresses using these relations:

$$
\left\{\begin{array}{c}
\sigma_{x} \tag{15}\\
\sigma_{y} \\
\sigma_{x y}
\end{array}\right\}=[\bar{Q}]\left\{\begin{array}{c}
\epsilon_{x}^{0} \\
\epsilon_{y}^{0} \\
\gamma_{x y}^{0}
\end{array}\right\}+\frac{z_{k}-z_{k-1}}{2}[\bar{Q}]\left\{\begin{array}{c}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{x y}
\end{array}\right\}
$$

Finally, to get stress values that I could use to critique with the maximum stress criteria, I applied a transformation matrix to bring everything back to the local coordinates. This happened for each ply.
The general equation that I will be using is:

$$
\left[\begin{array}{c}
\sigma_{1} \tag{16}\\
\sigma_{2} \\
\sigma_{12}
\end{array}\right]=[T]\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{x y}
\end{array}\right]
$$

At each instance where a ply fails, I mark it as a failure and record the failure type (tension in the X-direction, shear, etc). I also let it keep testing in all of the other directions and plies after a failure is detected to get a better understanding of where the failures occur. I append each failure type and ply number to a string for tracking. After collecting all the data for a run, I compile everything to a spreadsheet that is time-stamped, which allows me to keep track of how trends change.

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	\bigcirc	P	Q	R	s	T	U	v
1	trial	stack_1 s	stack_2 sta	stack_3	stack_4	stack_5	stack_6	thickness_1	thickness_2	thickness_3	thickness_4	thickness_5	thickness_6	height	failure	failure_mode						
2	1	0	15	-30	-30	15	0	0.007	0.009	0.01	0.01	0.009	0.007	0.052	0							
3	2	-90	0	-45	-45	0	-90	0.008	0.01	0.007	0.007	0.01	0.008	0.05	1	YC1 XC2 XT5 Y						
4	3	0	0	-45	-45	0	0	0.008	0.009	0.005	0.005	0.009	0.008	0.044	1	XC1						
5	4	60	30	0	0	30	60	0.006	0.005	0.008	0.008	0.005	0.006	0.038	1	YC1 TAU1 XC2	C2 TAU	xT4	T5 TAU	6 TA		
6	5	75	-75	-45	-45	-75	75	0.006	0.005	0.009	0.009	0.005	0.006	0.04	1	YC1 Tau1 YC2	AU2 XC	TAL	YT4 TA	YTS	T6	
7	6	90	60	0	0	60	90	0.006	0.01	0.006	0.006	0.01	0.006	0.044	1	yc1 tau1 yc2	AU2 XC	4 YT5	YT6 TA			
8	7	-30	-15	15	15	-15	-30	0.009	0.01	0.008	0.008	0.01	0.009	0.054	1	tau1 yt6 taug						
9	8	75	0	0	0	0	75	0.006	0.006	0.006	0.006	0.006	0.006	0.036	1	YC1 XC2 XT5 Y	Yt6					
10	9	-90	0	0	0	0	-90	0.007	0.005	0.008	0.008	0.005	0.007	0.04	1	YC1 XC2 2 XT5 Y	YT6					
11	10	-15	0	-30	-30	0	-15	0.01	0.006	0.008	0.008	0.006	0.01	0.048	1	taui taub						
12	11	-45	90	30	30	90	-45	0.008	0.005	0.007	0.007	0.005	0.008	0.04	1	XC1 YC1 TAU1	¢2 YC2	XT4 X	YT6 T			
13	12	75	-45	-60	-60	-45	75	0.008	0.009	0.009	0.009	0.009	0.008	0.052	1	YC1 TAU1 YC2	AU2 Yt	TAU	tau6			
14	13	0	-45	0	0	-45	0	0.008	0.008	0.005	0.005	0.008	0.008	0.042	1	XC1 YT1 XT6						
15	14	-90	0	0	0	0	-90	0.006	0.007	0.01	0.01	0.007	0.006	0.046	1	YC1 XC2 XT5 Y						
16	15	-90	-45	60	60	-45	-90	0.006	0.007	0.01	0.01	0.007	0.006	0.045	1	YC1 TAU1 XC2	C2 TAU	xT5	AUS YT			
17	16	-60	0	75	75	0	-60	0.008	0.005	0.005	0.005	0.005	0.008	0.036	1	YC1 TAU1 XC2	T4 XT5	AU6				
18	17	-75	-30	-30	-30	-30	-75	0.006	0.01	0.01	0.01	0.01	0.006	0.052	1	YC1 YC2 TAU2	T4 YT5	YT6				
19	18	-45	45	-90	-90	45	-45	0.008	0.007	0.008	0.008	0.007	0.008	0.046	1	TAU1 XC2 TAU	XC4 YT	TAU	TAU6			
20	19	-45	0	0	0	0	-45	0.009	0.007	0.008	0.008	0.007	0.009	0.048	1	TAU1 XC2 YT2	¢ 5 YT6					
21	20	90	-30	60	60	-30	90	0.01	0.008	0.008	0.008	0.008	0.01	0.052	1	YC1 TAU1 XC2	aU2 Yt	YT5	YT6 TA			
22	21	-90	0	0	0	0	-90	0.005	0.01	0.006	0.006	0.01	0.005	0.042	1	YC1 XC2 XT5 Y						
23	22	-45	-60	0	,	-60	-45	0.005	0.006	0.008	0.008	0.006	0.005	0.038	1	XC1 YC1 TAU1	C2 tau	XT4	AUS XT	6T		
24	23	0	75	-90	-90	75	0	0.007	0.006	0.008	0.008	0.006	0.007	0.042		XC1 YT5 XT6						
25	24	0	0	0	0	0	0	0.005	0.009	0.008	0.008	0.009	0.005	0.044	1	XC1						
26	25	0	-15	0	0	-15	0	0.008	0.005	0.01	0.01	0.005	0.008	0.046	0							
27	26	-30	0	75	75	0	-30	0.005	0.006	0.007	0.007	0.006	0.005	0.036	1	TAU1 XC2 YT2	¢5 YT6					
28	27	0	,	-45	-45	0	0	0.005	0.006	0.008	0.008	0.006	0.005	0.038		XC1 XC2 XT6						
29	28	-45	90	30	30	90	-45	0.008	0.006	0.009	0.009	0.006	0.008	0.046	1	YC1 TAU1 YC2	C3 XT4	YT6				

Figure 2: Screenshot of spreadsheet

Now here is a table that highlights the results of my optimization

Table 2: Optimization Highlights

Trial	Best Result Orientation	Best Result Height (m)
1	-	-
2	-	-
3	$\left[-7^{\circ} / 77^{\circ} / 1^{\circ} /\right]_{s}$	0.056
4	$\left[-8^{\circ} / 41^{\circ} / 64^{\circ} /\right]_{s}$	0.05
5	$\left[-15^{\circ} / 0^{\circ} / 0^{\circ} /\right]_{s}$	0.048
6	$\left[0^{\circ} /-15^{\circ} / 0^{\circ} /\right]_{s}$	0.046
7	$\left[10^{\circ} /-14^{\circ} / 48^{\circ} /\right]_{s}$	0.044
8	$\left[0^{\circ} / 0^{\circ} /-60^{\circ} /\right]_{s}$	0.0442
9	$\left[0^{\circ} / 0^{\circ} / 0^{\circ} /\right]_{s}$	0.0436
10	$\left[-15^{\circ} / 0^{\circ} / 15^{\circ} /\right]_{s}$	0.0436

Notes/Changelog:
Trial 1: All results had failures in 5 or 6 plies
Trial 2: Changes thickness bounds to .1 to 10 mm , best result failed in only one ply
Trial 3: Thickness bounds changed to 1 to 10 mm . Only one result did not fail.
Trial 4: Thickness bounds changed to 5 to 10 mm . Again, only one result did not fail, but had a handful of cases that almost passed (only failed in one direction and in one ply).

Trial 5: Thickness bounds were left unchanged, but I discretize the available angles to more 'standard' angles, namely $\pm[0,15,30,45,60,75,90]$. I noticed that cases with a lot of 0° plies seemed to be less failure-prone

Trial 6: After noticing that 0° plies seemed to be more successful, I increased the frequencies of 0s by changing the available angles to be $\pm[0,0,0,15,30,45,60,75,90]$.

Trial 7: I switched back to completely random angles varying from -90° to 90°. Instead of randomly generating 100 combinations, I generated 1000.

Trial 8: I switched back to the 0 -biased allowable angles from Trial 6, but this time, I allowed the random thickness to generate a number by the .1 mm . Again, I had 1000 cases, which took 26 minutes to generate and analyze. For the first time, the best result's height did not decrease.

Trial 9: Out of curiosity, I decided to see what would happen if I forced all the angles to be equal to 0 . I only ran 100 cases and it took just two minutes.

Trial 10: Finally, I decided to call it quits. The final trial had the thickness bound from 5 to 10 mm with randomization down to the .1 mm . The angles were randomly selected from $\pm[0,0,0,15,30,45,60,75,90]$.

To conclude, I say that my final optimized beam has these properties:

Table 3: Optimized Beam Properties

Parameter	Value
θ_{1}	-15°
θ_{2}	0°
θ_{3}	15°
t_{1}	5.7 mm
t_{2}	7.5 mm
t_{3}	8.6 mm
Total Thickness	43.6 mm

Code

```
%% MAE 166C Project; Willy Teav 104917860
clearvars; close all ;clc
E1 = 155e9;
E2 = 12.1e9;
G12 = 4.4e9;
nu12 = .248;
XT = 1500e6;
XC = -1250e6;
YT = 50e6;
YC = -200e6;
TAU = 100e6;
q = 10e3; %N/m
L = 5; %m
w = 25e-2; %m
N_x = 0; N_Y = 0; N_xy = 0; M_Y = 0;
M_x = (q*L^2)/(2*W);
M_xy = - (q*L)/2;
NM_vec = [N_x; N_y; N_xy; M_x; M_y; M_xy];
```

\% pseudo code
\% 3 angles and 3 thicknesses
\% randomly pick angles and thicknesses
\% calculate volume and whether or not it passes
\% log all in excel sheet
\% try again with new values
\% initializations
angle1 $=45$; angle2 $=45$; angle3 $=45$;
t1 =.1e-3; t2 =.1e-3; t3 = . $1 \mathrm{e}-3$;
sign $=[-1,1] ;$
sheetname $=$ datestr(now, $\left.{ }^{\prime} m m-d d-H H-M M-S S^{\prime}\right)$;
num_trials = 100;
wb = waitbar (0,'progress');
angles $=[0,0,0,15,30,45,60,75,90]$;
$\%$ angles $=[0,0]$;
tic
for trial = 1:num_trials
failure $=0$;
failure_layer = 0;
failure_mode = "";
angle1 = angles(randi(length(angles)))*sign(randi(2));
angle2 $=$ angles(randi(length(angles))) *sign(randi(2));
angle3 $=$ angles(randi(length(angles))) *sign(randi(2));
\% angle1 $=$ randi([0,90])*sign(randi(2));
\% angle2 $=$ randi($[0,90]) * \operatorname{sign}($ randi $(2))$;
\% angle3 = randi([0, 90])*sign(randi(2));
t1 $=$ randi ([50,100])/1e4; t2 $=\operatorname{randi}([50,100]) / 1 e 4 ; ~ t 3=r a n d i([50,100]) / 1 e 4 ;$
\%5 to 10 mm layer thickness
stack $=$ [angle1, angle2, angle3, angle3, angle2, angle1];

```
thickness = [t1, t2, t3, t3, t2, t1];
z = make_z(stack,thickness);
A_mtx = A(stack,z,E1,E2,G12, nu12);
B_mtx = B(stack,z,E1,E2,G12,nu12);
D_mtx = D(stack,z,E1,E2,G12,nu12);
ABD_mtx = [A_mtx,B_mtx;B_mtx,D_mtx];
syms epsx epsy gammaxy kx ky kxy
eq = NM_vec == ABD_mtx*[epsx; epsy; gammaxy; kx; ky; kxy];
vals = (vpasolve(eq));
epsx = double(vals.epsx);
epsy = double(vals.epsy);
gammaxy = double(vals.gammaxy);
kx = double(vals.kx);
ky = double(vals.ky);
kxy = double(vals.kxy);
for i = 1:length(stack)
    sigma_middle = Qbar(stack(i),E1,E2,G12,nu12)*[epsx;epsy;gammaxy] + ...
    .5*(z(i)+z(i+1))*Qbar(stack(i),E1,E2,G12,nu12) *[kx;ky;kxy];
    sigmax(i) = sigma_middle(1);
    sigmay(i) = sigma_middle(2);
    sigmaxy(i) = sigma_middle(3);
    strainx(i) = epsx + . 5*(z(i)+z(i+1))*kx;
    strainy(i) = epsy + . 5*(z(i)+z(i+1))*ky;
    strainxy(i) = gammaxy + . 5*(z(i) +z(i+1)) *kxy;
end
for layer = 1:length(stack)
    sigma_vec = T(stack(layer))*[sigmax(layer);sigmay(layer);sigmaxy(layer)];
    sigma_1 = sigma_vec(1);
    sigma_2 = sigma_vec(2);
    sigma_12 = sigma_vec(3);
    if sigma_1 > XT || sigma_1 < XC
        %sigma_1
        if sigma_1 > 0
            failure_mode = append(failure_mode," XT",num2str(layer));
        else
            failure_mode = append(failure_mode," XC",num2str(layer));
        end
        %failure_layer = layer;
        failure = 1;
    end
    if sigma_2 > YT || sigma_2 <YC
        %sigma_2
        if sigma_2 > 0
            failure_mode = append(failure_mode," YT",num2str(layer));
        else
            failure_mode = append(failure_mode," YC",num2str(layer));
        end
        %failure_layer = layer;
        failure = 1;
    end
```

```
    if abs(sigma_12) > abs(TAU)
        %sigma_12
        failure_mode = append(failure_mode," TAU",num2str(layer));
        %failure_layer = layer;
        failure = 1;
    end
end
```

\%outputs
trial;
stack;
thickness;
height = sum(thickness);
failure;
failure_mode;
\%failure_layer
tab = table(trial,stack,thickness,height,failure,failure_mode);
\%sheetname $=$ datestr(now,'mm-dd-HH-MM-SS');
if trial == 1
\%xlswrite('MAE_166C_Optimization.xlsx', ["Trial","stack","thickness"...
\% ,"height","failure","failure_mode"],'Test','A1')
\%xlswrite('MAE_166C_Optimization.xlsx', ["Silly Goose"],'Test','P1:S1')
\% xlswrite('MAE_166C_Optimization.xlsx',tab.Properties.VariableNames,...
\%
'Test','A1')
writetable(tab,'MAE_166C_Optimization.xlsx','Sheet', sheetname,'Range','A1')
end
excel_range $=$ append('A', num2str(trial+1));
xlswrite('MAE_166C_Optimization.xlsx', [num2cell(trial), num2cell(stack), ...
num2cell(thickness), num2cell(height), num2cell(failure),...
failure_mode],' Test', excel_range)
xlswrite('MAE_166C_Optimization.xlsx',tab.Variables, sheetname, excel_range)
\%w.b $=$ waitbar(trial/num_trials,'progress');
waitbar(trial/num_trials,wb,'progress')
end
winopen('MAE_166C_Optimization.xlsx')
toc
\%\% debug
\% thickness $=[1,1,1,2,2,2]$;
\% stack $=[45,45,90,90,45,45]$;
\% $z=$ make_z(stack,thickness)

응 Functions
function $T=T($ theta)
$T=\left[\operatorname{cosd}(t h e t a)^{\wedge} 2, ~ s i n d(t h e t a)^{\wedge} 2,2 * \operatorname{sind}(t h e t a) * \operatorname{cosd}(\right.$ theta); sind(theta) ^2, cosd(theta) ^2, $-2 *$ sind(theta) *cosd(theta); - sind(theta) *cosd(theta), sind(theta)*cosd(theta), ...

```
cosd(theta)^2 - sind(theta)^2];
```

end

```
function Q = Q(E1,E2,G12,nu12)
nu21 = (E2/E1)*nu12;
Q = [E1/(1-(nu12*nu21)) , (nu21*E1)/(1 - (nu21*nu12)), 0;
    (nu12*E2)/(1 - (nu12*nu21)), E2/(1-(nu12*nu21)), 0;
    0, 0, G12];
end
```

function Qbar $=$ Qbar (theta, E1, E2, G12, nu12)
Qbar $=T(\text { theta })^{\wedge}-1 * Q(E 1, E 2, G 12, n u 12) * T\left(\right.$ theta) ${ }^{\wedge}-1$;
end
function alphabar = alphabar(theta, alpha1, alpha2)
alphabar $=[$ alpha1*cosd (theta) ^2+alpha2*sind(theta)^2;...
alpha1*sind(theta) ^2+alpha2*cosd(theta) ^2; ...
2 *(alpha1-alpha2) *cosd(theta) *sind(theta)];
end
function z = make_z(array,thickness)
$\mathrm{N}=$ length(array);
\%height = thickness*N;
\%z = linspace(-height/2,height/2,N+1);
height $=$ sum(thickness);
z = zeros (1,N);
$z(1)=$-height/2;
for $i=2: N+1$
$z(i)=z(i-1)+$ thickness (i-1);
end
end
function $A=A($ array, z_array, E1, E2, G12, nu12)
\%let array be an array of angles
$\mathrm{N}=$ length(array);
A $=$ zeros (3);
for $i=2: N+1$ $A=A+Q b a r(\operatorname{array}(i-1), E 1, E 2, G 12, \operatorname{nul2}) *\left(z _\operatorname{array}(i)-z _a r r a y(i-1)\right) ;$
end
end
function $B=B($ array,z_array, E1, E2, G12, nu12)
\%let array be an array of angles
$\mathrm{N}=$ length(array);
B $=$ zeros (3);
if ~isequal (array(:),flip(array(:))) \%fixed a rounding error that causes symmetric arrays to not turn $B=0$
for $i=2: N+1$
$B=B+Q b a r(\operatorname{array}(i-1), E 1, E 2, G 12, n u 12) *\left(z _\operatorname{array}(i)^{\wedge} 2-z _\operatorname{array}(i-1)^{\wedge} 2\right) ;$
end
$\mathrm{B}=\mathrm{B} / 2$;
end
end
function D = D(array,z_array,E1,E2,G12, nu12)
\%let array be an array of angles
$\mathrm{N}=$ length(array);
D $=$ zeros (3);

```
for i = 2:N+1
    D = D + Qbar(array (i-1),E1,E2,G12,nu12)*(z_array(i)^3-z_array(i-1)^ 3);
end
D = D/3;
end
```

